Does method `.fit()`

from Linear Regression Model equal to gradient descent function what we do in lesson **here**:

```
def get_gradient_at_b(x, y, b, m):
N = len(x)
diff = 0
for i in range(N):
x_val = x[i]
y_val = y[i]
diff += (y_val - ((m * x_val) + b))
b_gradient = -(2/N) * diff
return b_gradient
def get_gradient_at_m(x, y, b, m):
N = len(x)
diff = 0
for i in range(N):
x_val = x[i]
y_val = y[i]
diff += x_val * (y_val - ((m * x_val) + b))
m_gradient = -(2/N) * diff
return m_gradient
#Your step_gradient function here
def step_gradient(b_current, m_current, x, y, learning_rate):
b_gradient = get_gradient_at_b(x, y, b_current, m_current)
m_gradient = get_gradient_at_m(x, y, b_current, m_current)
b = b_current - (learning_rate * b_gradient)
m = m_current - (learning_rate * m_gradient)
return [b, m]
def gradient_descent(x, y, learning_rate, num_iterations):
b = 0
m = 0
for i in range(num_iterations):
b, m = step_gradient(b, m, x, y, learning_rate)
return [b, m]
```

I mean does `.fit()`

returns out `m, b `

coefficient ?