Real Estate Investment Trust

Hi,

Here is my Real Estate Investment Trust project, please provide any feedback.

REIT Stock Analysis

Import the numpy module as np

import numpy as np

Load the adjusted closings for SBRA

adj_closings_sbra = np.loadtxt(‘SBRA.csv’, skiprows=1, usecols=5, delimiter=’,’)

Load the adjusted closings for EQR

adj_closings_eqr = np.loadtxt(‘EQR.csv’, skiprows=1, usecols=5, delimiter=’,’)

Simple Rate of Return Function

   Create a function that returns the daily rate of return

def rate_of_return(adj_closings):
daily_simple_ror = np.diff(adj_closings)/adj_closings[:-1]
return daily_simple_ror

Calculate Daily Rate of Return for SBRA

daily_simple_returns_sbra = rate_of_return(adj_closings_sbra)

Calculate Daily Rate of Return for EQR

daily_simple_returns_eqr = rate_of_return(adj_closings_eqr)

Calculate Average Daily Return for SBRA

average_daily_simple_return_sbra = np.mean(daily_simple_returns_sbra)
print(average_daily_simple_return_sbra)

0.00210937212011956

Calculate Average Daily Return for EQR

average_daily_simple_return_eqr = np.mean(daily_simple_returns_eqr)

print(average_daily_simple_return_eqr)

0.0015777637451981398

Compare the Average Daily Return between EQR and SBRA

Sbra
Daily Log Returns Function

Create a function that returns the daily rate of return

def log_returns(adj_closings):
log_adj_closings = np.log(adj_closings)
daily_log_returns = np.diff(log_adj_closings)
return daily_log_returns

Calculate Daily Log Returns for SBRA

daily_log_returns_sbra = log_returns(adj_closings_sbra)

print(daily_log_returns_sbra)

Calculate Daily Log Returns for EQR

daily_log_returns_eqr = log_returns(adj_closings_eqr)
print(daily_log_returns_eqr)

Annualize Daily Log Return Function

Create a function that returns the daily rate of return

def annualize_log_return(daily_log_returns):
average_daily_log_returns = np.mean(daily_log_returns)
annualized_log_return = average_daily_log_returns * 250
return annualized_log_return

Calculate Annualize Daily Log Return for SBRA

annualized_log_return_sbra = annualize_log_return(daily_log_returns_sbra)

print(annualized_log_return_sbra)

0.5044563709645333

Calculate Annualize Daily Log Return for EQR

annualized_log_return_eqr = annualize_log_return(daily_log_returns_eqr)
print(annualized_log_return_eqr)

0.3855982155640554

Compare the Annualize Daily Log Return between EQR and SBRA

Based on the differences between the Annualize Daily Log Return for EQR and SBRA, Which could be more profitable in the future and why?

Calculate Variance of Daily Log Return for SBRA

daily_variance_sbra = np.var(daily_log_returns_sbra)
print(daily_variance_sbra)

0.00017844226355047074

Calculate Variance of Daily Log Return for EQR

daily_variance_eqr = np.var(daily_log_returns_eqr)
print(daily_variance_eqr)

6.833881310511606e-05

Compare the Variance of Daily Log Return between EQR and SBRA

Explain which investment is more riskier based on the Variance of daily log return between EQR and SBRA ?  SBRA is riskier

Calculate the Daily Standard Deviation for SBRA

daily_sd_sbra = np.std(daily_log_returns_sbra)
print(daily_sd_sbra)

0.013358228308816658

Calculate the Daily Standard Deviation for EQR

daily_sd_eqr = np.std(daily_log_returns_eqr)
print(daily_sd_eqr)

0.00826672928703463

Compare the Daily Standard Deviation between EQR and SBRA

Has your previous variance risk assessment changed based on the Daily Standard Deviation and why?  No, the Std reinforces previous assessments

Calculate the Correlation between SBRA and EQR

corr_sbra_eqr = np.corrcoef(daily_log_returns_sbra, daily_log_returns_eqr)
print(corr_sbra_eqr)

[[1. 0.62096591]
[0.62096591 1. ]]

Interpret the Correlation between SBRA and EQR

Interpret and explain the correlation between the stocks SBRA and EQR?  There is a positive correlation so should invest in one not both in order to diversify.

Final Analysis

Which stock would you invest in based on risk and profitability? SBRA