Here is my workings on the REIT project.
pip install numpy
import numpy
adj_closings_SBRA = numpy.loadtxt('SBRA.csv', skiprows=1, usecols=5, delimiter = ',')
print(adj_closings_SBRA )
adj_closings_EQR = numpy.loadtxt('EQR.csv', skiprows=1, usecols=5, delimiter = ',')
print(adj_closings_EQR )
def simple_rate_of_return(adj_closings):
daily_simple_ror = numpy.diff(adj_closings)/adj_closings[:1]
return daily_simple_ror
daily_simple_returns_sbra = simple_rate_of_return(adj_closings_SBRA)
print(daily_simple_returns_sbra)
daily_simple_returns_eqr = simple_rate_of_return(adj_closings_EQR)
print(daily_simple_returns_eqr)
average_daily_simple_return_sbra = numpy.mean(daily_simple_returns_sbra)
print(average_daily_simple_return_sbra)
average_daily_simple_return_eqr = numpy.mean(daily_simple_returns_eqr)
print(average_daily_simple_return_eqr)
def log_returns(adj_closings):
log_adj_closings = numpy.log(adj_closings)
daily_log_returns = numpy.diff(log_adj_closings)
return daily_log_returns
daily_log_returns_sbra = log_returns(adj_closings_SBRA)
print(daily_log_returns_sbra)
daily_log_returns_eqr = log_returns(adj_closings_EQR)
print(daily_log_returns_eqr)
def annualize_log_return(daily_log_returns):
average_daily_log_returns = numpy.mean(daily_log_returns)
annualized_log_return = average_daily_log_returns * 250
return annualized_log_return
annualized_log_return_eqr = annualize_log_return(daily_log_returns_eqr)
print(annualized_log_return_eqr)
daily_variance_sbra = numpy.var(daily_log_returns_sbra)
print(daily_variance_sbra)
daily_variance_eqr = numpy.var(daily_log_returns_eqr)
print(daily_variance_eqr)
daily_sd_sbra = numpy.std(daily_log_returns_sbra)
print(daily_sd_sbra)
daily_sd_eqr = numpy.std(daily_log_returns_eqr)
print(daily_sd_eqr)
corr_sbra_eqr = numpy.corrcoef(daily_log_returns_sbra, daily_log_returns_eqr)
print(corr_sbra_eqr)