JavaScript Challenge - Stairmaster

This community-built FAQ covers the “Stairmaster” code challenge in JavaScript. You can find that challenge here, or pick any challenge you like from our list.

Top Discussions on the JavaScript challenge Stairmaster

There are currently no frequently asked questions or top answers associated with this challenge – that’s where you come in! You can contribute to this section by offering your own questions, answers, or clarifications on this challenge. Ask a question or post a solution by clicking reply (reply) below.

If you’ve had an “aha” moment about the concepts, formatting, syntax, or anything else with this challenge, consider sharing those insights! Teaching others and answering their questions is one of the best ways to learn and stay sharp.

Join the Discussion. Help a fellow learner on their journey.

Ask or answer a question about this exercise by clicking reply (reply) below!
You can also find further discussion and get answers to your questions over in #get-help.

Agree with a comment or answer? Like (like) to up-vote the contribution!

Need broader help or resources? Head to #get-help and #community:tips-and-resources. If you are wanting feedback or inspiration for a project, check out #project.

Looking for motivation to keep learning? Join our wider discussions in #community

Learn more about how to use this guide.

Found a bug? Report it online, or post in #community:Codecademy-Bug-Reporting

Have a question about your account or billing? Reach out to our customer support team!

None of the above? Find out where to ask other questions here!

I took this challenge to the next level by listing all the ways in an array instead of just the number of ways. When we have all the permutations, we can just get the number of ways by returning the length of the array. Furthermore, to pass this test, we have to define the case when n === 0.

I wrote a function called theseAddToSum that takes in an array of steps, such as [1, 2, 3], and a sum, here is 4— using recursion. I sketched it out on paper.

And here is my `theseAddToSum` function
function theseAddToSum(steps = [], sum) {
  
  if (sum < 0) return []; // No solution
  if (sum === 0) return [[]]; // A solution
  
  let results = [];

  if (steps.length < 1) return 'error';

  for (let i = 0; i < steps.length; i++) {
    let cur = steps[i];
    let remaining = sum - cur; 
 
    let c = theseAddToSum(steps, remaining);
    for (let solution of c) {
        solution.push(cur);
        results.push(solution);
      }
  }

  return results;
};

This is the solution that helped me pass this challenge:

function theseAddToSum (steps = [], sum) { // Base cases if (sum < 0) return []; // No Solution if (sum === 0) return [[]]; // A Solution let results = []; if (steps.length < 1) return 'error'; for (let i = 0; i < steps.length; i++) { let cur = steps[i]; let remaining = sum - cur; let c = theseAddToSum(steps, remaining); for (let solution of c) { solution.push(cur); results.push(solution); } } return results; } function stairmaster(n) { // Base cases if (n === 0) return 0; let ways = theseAddToSum([1, 2, 3], n); console.log(ways); return ways.length; } console.log(stairmaster(4)); // Leave this so we can test your code: module.exports = stairmaster;
3 Likes
function stairmaster(n) {
  let count = 0;
 
  function step(stairs) {
    for (let i = 1; i <= 3 && i <= n; i++) {
      if (stairs + i > n) {
        break;
      } else if (stairs + i === n) {
        count++;
        break;
      } else {
        step(stairs+i);
      }
    }
  }
  step(0);
  return count;
}

I did the same thing as the other posts, I used recursion.

recursive version
function stairmaster(n) {
  const maxSteps = 3;
  if (n <= 0) { return 0; }
  else if (n <= maxSteps) { // base case
    return Math.pow(2, n - 1); 
  }
  else { // recursive case
    let total = 0;
    for (let j = 1; j <= maxSteps; j++) {
      total += stairmaster(n - j);
    }
    return total;
  }
}

But I guess storing the values already computed would be useful if the number of stairs is big.

version using memoziation
const mastered = [0, 1, 2, 4]; 

function stairmaster(n) {
  const maxSteps = 3;
  if (n <= 0) { return 0; }
  else if (n < mastered.length) { // memoization used
    return mastered[n];
  }
  else { // recursive case
    let total = 0;
    for (let j = 1; j <= maxSteps; j++) {
      total += stairmaster(n - j);
    }
    mastered[n] = total;
  }
  return mastered[n];
}

Very fast calculation with combinations, pemutations, factorial and caching.

function cachedFactorial() {
  let cache = new Map();
  return function fact(n) {
    if (cache.has(n)) return cache.get(n);
    let res = n ? n * fact(n - 1) : 1;
    cache.set(n, res);
    return res;
  };
}
const factorial = cachedFactorial();

function stairmaster(n) {
  if (n === 0) return 0;
  let result = 0;
  for (let i = 0; i <= n; i++) {
    for (let j = 0; j <= Math.floor(n / 2); j++) {
      for (let k = 0; k <= Math.floor(n / 3); k++) {
        if (i + j * 2 + k * 3 === n) {
          const permutations = factorial(i + j + k) / (factorial(i) * factorial(j) * factorial(k));
          result += permutations;
        }
      }
    }
  }
  return result;
}
1 Like
function stairmaster(n) {
  if (!(Number.isInteger(n) && n > 0))
    return '[] The argument passed must be a positive integer greater than zero'

  if (n === 1) return '[1]'

  const stepsToUp = [1, 2, 3]

  let array = []
  let arr = []
  let sum = 0

  function Add(x) {
    arr.push(x)
    sum = arr.reduce((a, b) => a + b)

    if (sum === n) {
      array.push([...arr])
    }

    if (sum < n) {
      let currentArr = [...arr]
      Add(x)
      arr = [...currentArr]
      if (x > 1) {
        while(x--) {
          Add(x)
        }
      }
    }
    arr = []
  }

  stepsToUp.forEach(e => {
    if (e > 1) Add(e)
  })

  const copy = [...array]

  copy.forEach(e => {
    for (let i = 0; i < e.length; i++) {
      for (let j = 0; j < e.length - 1; j++) {
        let next = e[j+1]
        if (next !== e[j]) {
          e[j+1] = e[j]
          e[j] = next
        }
        array.push([...e])
      }
    }
  })

  Add(1)

  let set = {}
  array.forEach(e => set[e] = e)
  const values = Object.values(set).sort((a, b) => b.length - a.length)
  let stringReturn = ''
  values.forEach((e) => stringReturn += `[${e}] `)

  return stringReturn.trim()
  // If you want it returned as an array of arrays, just return the "values" or return an Object.values(freq).
  // If you just want how many combinations/permutations there are, just return "values.length" or Object.values(freq).length
}
function stairmaster(n) {
  function climb(num) {
    if(num < 0) return 0; 
    if(num === 0) return 1; 
    return climb(num-1) + climb(num-2) + climb(num-3); 
  }
  if(n===0) return 0;
  return climb(n)
}

console.log(stairmaster(4));