- We consider an equally spaced two-dimensional grid of size n × n, e.g. 9 x 9
- The whole area of the square has to be filled with non-overlapping non-congruent rectangles with integer dimension, e.g. 1x1,1x2, 2x2, 3x4 …, cannot use the same rectangles twice.
- The trivial case of one square filling the entire area is not allowed.
- The puzzle is to fill up the n x n square and
**find the smallest possible difference between the largest and the smallest rectangle**

**In picture above, different = 12 - 4 = 8.**

**Challenge 1: Grid size 9 x 9**

**Challenge 2: Grid size n x n**

**I will update this post with the best answer (in my opinion) on May 21th 2018.**

See youtube video for visual explanation of the puzzle: