Analyze data with python Covid project

My project submission for the analyze data with python skill path. Thank you for any replies and comments.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

coviddata = pd.read_csv(r"\Conditions_Contributing_to_COVID-19_Deaths__by_State_and_Age__Provisional_2020-2023.csv")
#death depending on age
coviddata.info()
coviddata.describe()
coviddataage = coviddata.groupby("Age Group", as_index=False).sum()
coviddataage

np.quantile(coviddataage["COVID-19 Deaths"], (0.25,0.5,0.75))
def iqr(data):
    return np.quantile(data, 0.75) - np.quantile(data, 0.25)
iqr(coviddataage["COVID-19 Deaths"])
#visualization
fig = plt.figure(figsize=(10,5))
fig
coviddataagedropped = coviddataage.drop(8, axis=0)
plt.pie(coviddataagedropped["COVID-19 Deaths"], labels=coviddataagedropped["Age Group"], textprops={"fontsize":8}, rotatelabels=90)
plt.title("COVID-19 death depending on age")
plt.annotate("biggest age Group", (1,-0.9))
plt.figure(figsize=(15,5))
plt.bar(coviddataagedropped["Age Group"], coviddataagedropped["COVID-19 Deaths"])
coviddataage.describe()

#statistical tests

from scipy.stats import ttest_1samp
t_stat, p_value = ttest_1samp(coviddataage["COVID-19 Deaths"], popmean=66585.0)
#test if difference to group of young people is significant
t_stat
p_value
#Coviddeaths are strongly related to age as it can be seen in the graphs and the interquartile range. Moreover, 
#when testing for the difference to the mean of death of young people, the ttest shows a significant difference.