This is an abomination, but as a proof of concept it gives a result. Now I just need to refine this code and confirm the result.
Given,
x = "\
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 \
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 \
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 \
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 \
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 \
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 \
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 \
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 \
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 \
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 \
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 \
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 \
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 \
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 \
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 \
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 \
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 \
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 \
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 \
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48".split(" ")
Iterate over 289, 4X4 grids and find the largest sum of 10 in all. Cache the iterator variables, the row number of the highest value in the temporary list (0-9), and the sum.
u = []
for j in range(17):
for i in range(0, 340, 20):
y = []
y.append([int(z) for z in x[i+j:i+j+4]])
y.append([int(z) for z in x[i+j+20:i+j+24]])
y.append([int(z) for z in x[i+j+40:i+j+44]])
y.append([int(z) for z in x[i+j+60:i+j+64]])
ten = []
ten.append(sum(y[0]))
ten.append(sum(y[1]))
ten.append(sum(y[2]))
ten.append(sum(y[3]))
ten.append(y[0][0] + y[0][1] + y[0][2] + y[0][3])
ten.append(y[1][0] + y[1][1] + y[1][2] + y[1][3])
ten.append(y[2][0] + y[2][1] + y[2][2] + y[2][3])
ten.append(y[3][0] + y[3][1] + y[3][2] + y[3][3])
ten.append(y[0][0] + y[1][1] + y[2][2] + y[3][3])
ten.append(y[3][0] + y[2][1] + y[1][2] + y[0][3])
m = max(ten)
n = ten.index(m)
u.append((i,j,n,m))
iterate over list of top sums and find the largest sum
v = []
for k in u:
v.append(k[3])
w = max(v)
r = v.index(w)
i,j,k,a = u[r]
print (i,j,k,a)
Depending the position of largest sum of 10 in all, one of four algorithms is selected
if k < 4:
p = int(x[i+j+0]) + int(x[i+j+1]) + int(x[i+j+2]) + int(x[i+j+3])
q = int(x[i+j+0]) * int(x[i+j+1]) * int(x[i+j+2]) * int(x[i+j+3])
elif k < 8:
p = int(x[i+j+0]) + int(x[i+j+20]) + int(x[i+j+40]) + int(x[i+j+60])
q = int(x[i+j+0]) * int(x[i+j+20]) * int(x[i+j+40]) * int(x[i+j+60])
elif k == 8:
p = int(x[i+j+0]) + int(x[i+j+21]) + int(x[i+j+42]) + int(x[i+j+63])
q = int(x[i+j+0]) * int(x[i+j+21]) * int(x[i+j+42]) * int(x[i+j+63])
elif k == 9:
p = int(x[i+j+60]) + int(x[i+j+41]) + int(x[i+j+22]) + int(x[i+j+3])
q = int(x[i+j+60]) * int(x[i+j+41]) * int(x[i+j+22]) * int(x[i+j+3])
print (p,q)
"""
240 3 9 367
367 70600674
"""
Looking for ways to bring about a more logical approach and open to any discussion.